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A novel approach to efficient powder averaging in magnetic sphere. Because the computation time is proportional to the
resonance is presented. The method relies on a simple numerical number of crystallite orientations and because high-quality
procedure which based on a random set of crystallite orientations averaging corresponding to a uniform distribution of crys-
through simulation of fictive intercrystallite repulsive forces itera- tallite orientations is critical for obtaining reliable parameters
tively determines a set of orientations uniformly distributed over for anisotropic parts of the spin Hamiltonian, several studies
the unit sphere. The so-called REPULSION partition scheme is

have recently addressed methods for efficient powder aver-compared to earlier methods with respect to the distribution of
aging in magnetic resonance (1–5) .crystallite orientations, solid angles, and powder averaging effi-

A criterion for, in a minimum number of steps, achievingciency. It is demonstrated that powder averaging using REPUL-
acceptable powder averaging corresponding to a uniformSION converges faster than previous methods with respect to the
distribution of crystallite orientations, is that each orientationnumber of crystallite orientations involved in the averaging. This

feature renders REPULSION particularly attractive for calcula- through its weighting factor contributes equally to the sum
tion of magic-angle-spinning solid-state NMR spectra using a min- of contributions from all crystallites. Otherwise, expensive
imum of crystallite orientations. For numerical simulation of pow- computing time is spent on crystallites only providing a
der spectra, the reduced number of required crystallite orientations minor contribution to the spectrum. Since each weighting
translates into shorter computation times and simulations less factor may be assumed proportional to the solid angle, this
prone to systematic errors induced by finite sets of nonuniformly criterion may be regarded equivalent to finding the most
distributed crystallite orientations. q 1997 Academic Press

uniform distribution of crystallite orientations over the unit
sphere. Despite numerous studies it has not, to our knowl-
edge, been demonstrated possible to derive a set of truly

INTRODUCTION uniformly distributed crystallite orientations by analytical
means. In this work, we introduce a simple numerical

An important ingredient to the success of solid-state NMR method for deriving sets of uniformly distributed crystallite
as a probe to detailed information on the structure and dy- orientations and evaluate its usefulness for calculation of
namics of solids is the ability to perform accurate simulation solid-state NMR powder spectra using a minimum number
and iterative fitting of experimental spectra. Optimum simu- of crystallites.
lated spectra may be regarded representatives for structural
and dynamical parameters of the nuclear spin Hamiltonian POWDER AVERAGING
which in many cases are not extractable solely by visual
inspection of experimental spectra. This is particularly true In general, the free-induction decay observed for a powder
when operating with powder samples, which often may be may be described by
desirable either because this type of sample is the easiest to
obtain and handle experimentally or because sufficiently s( t)
large single crystals cannot be produced.

Simulation of solid-state NMR powder spectra requires Å 1
8p 2 *

2p

0

da *
p

0

db sin(b) *
2p

0

dgs( t ; a, b, g) , [1]
integration over all randomly distributed crystallite orienta-
tions. Since it is difficult or impossible to perform this inte-
gration by analytical means, powder averaging is usually where s( t ; a, b, g) characterizes the time evolution of a

single crystal with an orientation relative to the laboratoryaccomplished numerically by performing a weighted sum of
single-crystal spectra representing a large set of crystallite reference frame specified by the Euler angles (a, b, g)

(6, 7) . In the context of solid-state NMR, the dependenceorientations ideally being uniformly distributed over the unit
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133POWDER AVERAGING IN SOLID-STATE NMR

TABLE 1
Euler Angles and Weighting Factors for Various Powder-Averaging Methods

Routinely Applied for Calculation of Solid-State NMR Spectraa

M aij bij wij

Planar random 1 √[0, 2p[ √[0, p[ sin(bij)
Spherical random 1 √[0, 2p[ cos(bij) √ [0, 1[ 1

Planar grid M 2p
i 0 1

N
p

j
M / 1

sin(bij)

Spherical grid M 2p
i 0 1

N
cos01S1 0 2j

M / 1D 1

Planar ZCWb 1 2p Frac Fi 0 1
N

g1G p Frac Fi 0 1
N

g2G sin(bij)

Spherical ZCWb 1 2p Frac Fi 0 1
N

g1G cos01S1 0 2FracFi 0 1
N

g2GD 1

Aldermanc N 0 i tan01 Sj
iD cos01 SN 0 i 0 j

Rij
D SN

Rij
D3

SOPHEd i
p

2
i 0 j / 1

i
p

2
i

N 0 1
1

a The integers i, j, N, and M correspond to the powder averaging scheme of Eq. [3].
b Frac is a function that returns the fractional part of the argument. g1 and g2 may be selected according to Refs. (9, 10).
c Rij Å

√
i2 / j2 / (N 0 i 0 j)2. First octant only; the remaining seven octants are related to the first octant by symmetry (1).

d N replaced by N 0 1 in Eq. [3]. In the present study, the weighting factor is calculated using Eq. [9].

on g may often be treated separately. For static samples, g method of Alderman et al. (1) , and the more recent SOPHE
represents an immaterial rotation about the external magnetic method (5) . These formulas provide the basis for a graphical
field axis. For rotating samples, g describes a rotation about demonstration of the distribution of crystallite orientations
the rotor axis conveniently being factored into the angle for the different methods and for comparison of their pow-
describing the rotor revolution. In both cases, this effectively der-averaging efficiency through specific calculation of
leaves us with solid-state NMR spectra. We note that our comparison only

concerns the performance in regards to the selection of the
crystallite orientations, whereas the potential of the methods

s( t) Å 1
4p *

2p

0

da *
p

0

db sin(b) s( t ; a, b) , [2]
when combined with interpolation is not evaluated.

An impression of the various partition algorithms may be
obtained from the two- and three-dimensional plots in Fig. 1depending only on two variables. In practice, Eq. [2] is
showing the distribution of about 150 crystallites over the 2Dapproximated by the sum
a, b plane as well as over the 3D surface of the unit sphere.
It is evident that random selection leads to a rather nonuniform

s( t) Å ∑
N

iÅ1

∑
M

jÅ1

s( t ; aij , bij)wij , [3]
distribution of the crystallites and thereby inefficient powder
averaging. More uniform distributions are obtained using the
various methods for systematic selection of the crystallite orien-where we introduced the subscript ij indicating that the Euler
tations. It is noted that the planar random, grid, and ZCWangles may depend on two indices i and j not necessarily
methods, aiming at a uniform distribution of crystallites in thebeing selected independently. wij denotes the crystallite
a, b 2D plane, leads to a relatively high density of crystallitesweights normalized according to (N

iÅ1 (M
jÅ1 wij Å 1.

near the poles. To compensate for this, each contribution isSeveral powder-averaging methods have been proposed
weighted by wij Å sin(bij). This seemingly unfavorablefor calculation of solid-state NMR spectra. Table 1 gives
weighting (vide infra) is avoided in the corresponding sphericalformulas for Euler angles and weighting factors applied for
methods evaluating cos(b) instead of b. We note that therandom selection of Euler angles, two-dimensional grids, the
ZCW partition scheme (8–10) (Figs. 1d and 1e) recently hasmethod of Zaremba (8) , Conroy (9) , and Wolfsberg and

co-workers (10) (henceforth referred to as ZCW), the attracted considerable interest as a very efficient powder-aver-
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FIG. 1. Planar (left) and spherical (right) representations of crystallite orientations for powder-averaging methods employing (a) 150 random, (b)
144 planar grid, (c) 144 spherical grid, (d) 143 planar ZCW, (e) 143 spherical ZCW, (f ) 145 Alderman, (g) 146 SOPHE, and (h) 144 REPULSION
crystallites (see text) . It is noted that (a, b, d) and (c, e–h) originate from methods striving at uniform distribution of crystallite orientations within the
a, b 2D plane and over the 3D unit sphere, respectively.

aging method (4). Optimum powder-averaging efficiency us- by analytical means. To solve this problem, we instead adapt
ing this method ideally requires adjustment of the g1 and g2 a simple numerical approach to derive uniformly distributed
values (see Table 1) to the function for which the powder sets of crystallite orientations for fast and reliable powder
averaging must be performed (4, 10). Since such optimization averaging using a minimum number of crystallites. Realiza-
may be impractical, for example, in case of iterative fitting tion of equal solid angles for a given number of points on
involving variation of parameters causing significant functional a spherical surface corresponds to establishing the set of
changes, we restrict ourselves to the g values given by Cheng points for which each point exhibits the largest possible
et al. (10) for the two-dimensional function f Å a2b2 and by distance to all neighboring points. Physically, this situation
Koons et al. (4) for the anisotropic chemical shielding function. would, for example, occur for the equilibrium state of a
Similarities between calculations of powder spectra performed system of particles on a spherical surface subjected only to
using partition schemes optimized to these widely different interparticle repulsive forces. The repulsive force could, for
functions confirm that the g values given by Conroy (9) and example, be inversely proportional to the square of the sur-
Cheng et al. (10) may be regarded generally applicable (4). face distance between the points similar to the case of Cou-

lomb repulsion between particles of equal charge. This ex-
ample represents the basis for our so-called REPULSIONTHE REPULSION METHOD
method where the equilibrium state is determined iteratively
by moving the particles under influence of the repulsiveFigure 1 indicates difficulties in obtaining a set of crys-

tallite orientations uniformly distributed over the unit sphere forces from the other particles on the surface. When the
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system reaches equilibrium, the particles are distributed with other factors in the exponent leads to sets of crystallite orien-
tations of similar quality, although the number of iterationsmaximum distance to each other.

Consider N particles randomly distributed on a spherical required for convergence depends on this exponent. It is also
noted that similar sets of Euler angles alternatively may besurface. Let O be origin and Pk the coordinates of particle

k on the unit sphere. Upon introducing a repulsive force calculated using nonlinear optimization (11) to minimize
between the particles i and j , the two particles will separate (ixj q

02
ij , however, at the expense of severely prolonged

along the direction computing times.
The distribution of crystallites over the a, b 2D plane

and the 3D spherical surface corresponding to REPULSIONdPij Å (OPj 1 OPi ) 1 OPi , [4]
averaging using N Å 144 crystallite orientations is illustrated
in Fig. 1h. Clearly, relative to state-of-the-art methods, RE-provided the displacement for each particle is sufficiently
PULSION provides a very uniform distribution of crystal-small that movement along the tangent to a good approxima-
lites over the unit sphere. This implies that all weightingtion corresponds to that on the spherical surface. Within
factors intuitively may be assumed equal. In practice, thisthis assumption, repulsion between N particles would cause
proves to be a good approximation, although slightly betterparticle i to move to the position
performance may be obtained using a refined set of
weighting factors taking into account minor variations in the

OP new
i Å OP old

i / dPi

ÉOP old
i / dPiÉ

[5] crystallite solid angles. A first indication of small variations
in the solid angles becomes apparent by counting the number
of closest neighbors to each crystallite (corresponding to thewith the total displacement of particle i being defined as
number of lines extending from each point in Fig. 1h). It
appears that, although the vast majority of crystallites have
six neighbors, there will always be a small fraction of crystal-dPi Å C ∑

jxi

1

q 2
ij

dPij

ÉdPijÉ

. [6]
lites having five and/or seven neighbors depending on the
total number of crystallites. Since each crystallite orientation

In Eq. [6] , C is a scaling factor ensuring all displacements is defined through its repulsion to all other crystallites, it is
to be sufficiently small and qij is the angle between the tempting to relate the weighting factor of each crystallite
vectors OPi and OPj , to its repulsion to the surrounding crystallites. Thus, if the

effective area (i.e., the solid angle) for a given crystallite i
qij Å cos01(OPirOPj) , [7] is assumed inversely proportional by some order b to its

repulsion to all other crystallites, we may define a refined
to which the surface distance is proportional. Using Eqs. weighting factor by
[4] – [7] , it is straightforward to set up a procedure which
based on any (e.g., random) set of crystallite orientations wij } ( ∑

kxi

(qik)02)0b , [8]
iteratively determines the equilibrium state corresponding to
the maximum separation between all points. For each step

with k Å 1, . . . , N and j Å 1. In our experience, b Å 3of the iteration, the displacements for all points are calculated
provides the most efficient powder averaging.using an appropriate value of C to ensure smooth conver-

gence. Then all particles are made to move instantaneously.
This procedure is repeated until convergence after which the EVALUATION OF POWDER AVERAGING
Cartesian coordinates are converted to Euler angles using x
Å sin(b)cos(a) , y Å sin(b)sin(a) , and z Å cos(b) . For To compare the effective weighting factors for the differ-

ent methods, we employ a simple pictorial approach to nu-the convenience of the reader, Appendix 1 contains a pseudo
computer code specifying our procedure for derivation of merically calculate and display the solid angle associated

with each crystallite orientation without assuming any sys-REPULSION Euler angles for any desired number of crystal-
lites N . tem in the generation of these orientations. The ‘‘solid

angle’’ of a point may be approximated by the area on theGenerally, the very simple procedure outlined in Appen-
dix 1 converges within about 1000 iterations employing real- unit sphere being closer to that point than to its neighbors.

A neighbor to a given point on the unit sphere is defined asistic values of N up to about 1000. On a SUN Sparc 10/50
workstation, this corresponds to processing times of about a point to which a line can be drawn (on the surface) that is

shorter than all other lines crossing it. These lines correspond2 and 30 m for N values of 144 and 1000, respectively. We
note that attempts to change the distance dependence of the exactly to those forming the spherical plots in Fig. 1. By

inserting fictive points at the half distance between all neigh-repulsion from the square dependence assumed above to
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FIG. 2. (a, b) Graphical illustration of the area (i.e., the solid angle) on the spherical surface corresponding to each crystallite point (specifically
the points corresponds to REPULSION with 168 crystallite orientations) . The bounded areas (solid line) is formed by connecting fictive points taken
at the half distance between the crystallite itself and its closest neighbors and subsequently sharing the areas of the triangles not containing any crystallite
point among the three closest crystallite points. (c) Definition of points P1 , P2 , P3 , and P4 for any triangle on the surface of the unit sphere employed
for calculation of the surface area (solid angle) corresponding to each crystallite orientation (see text) .

boring points and connecting points surrounding a given ing methods may conveniently be characterized by plots
displaying the solid angles sorted according to size againstcrystallite, the main part of the area constituting the solid

angle is bounded. The areas of the remaining triangles also the crystallite number as illustrated in the right-hand
columns of Fig. 4. For comparison, the left-hand columnsgenerated through this partition of the unit sphere are distrib-

uted equally to the three surrounding crystallite areas. As
illustrated for specific regions of the unit sphere for a set of
REPULSION crystallites in Figs. 2a and 2b, this procedure
leads to well-defined areas (bounded by solid lines) , en-
abling visualization of the solid angle and thereby the
weighting factor corresponding to any crystallite orientation
on the unit sphere. The distribution and the variation of the
solid angles for the various powder-averaging methods are
illustrated by 3D spherical plots in Fig. 3. This representation
demonstrates significant variation in the effective solid
angles for the various methods and reinforces the impression
that REPULSION exhibits the most uniform distribution of
crystallite orientations.

The solid angles represented graphically in Fig. 3 may be
evaluated numerically by calculating the area of all triangles
constituting the bounded areas according to Fig. 2. Specifi-
cally, the area of a triangle on the unit sphere spanned by
the points P1 , P2 , and P3 sorted such that q12 § q13 , q23 (Fig.
2c) may be calculated using the following simple procedure.
First, a projection point P4 on the spherical surface (see Fig.
2c) is generated by calculating the projection P1P4 of P1P3

onto P1P2 and defining OP4 as the normalized variant of the
vector OP1 / P1P4 . Then the triangle is reconstructed with
the same surface distances but with P1 , P2 , and P4 located
at the equator of the unit sphere. This facilitates calculation
of the areas of the two triangles P1P3P4 and P4P3P2 to
simple surface integrals depending on a and b. Using this
procedure, the area of the full triangle P1P3P4 may be ex-
pressed by

Area123 Å
q12

q34

[1 0 cos(q34)] . [9] FIG. 3. Spherical plots of the areas closest to each crystallite ( i.e., the
solid angles) obtained using the procedure described in the text for (a) 150
random, (b) 144 planar grid, (c) 144 spherical grid, (d) 143 planar ZCW,

Using Eq. [9] and adding contributions from all triangles (e) 143 spherical ZCW, (f ) 145 Alderman, (g) 146 SOPHE, and (h) 144
REPULSION crystallites.constituting each crystallite area, the various powder-averag-
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second method, on the other hand, requires a totally con-
verged spectrum, i.e., the ideal simulation or an analytical
solution. However, this method has the important drawback
that just through the selection of a single orientation of the
tensor(s) relative to the crystal-fixed frame, it may introduce
systematic preferences to one or more of the methods de-
scribed above unless an extremely large number of crystal-
lites is employed for the ideal spectrum and several spectra
representing different tensor orientations are involved in the
comparison. Therefore, this approach is only employed to
ensure that the powder-averaging methods converge to a
reasonable value.

Let the absolute difference D between two spectra S1 and
S2 be defined as

D(S1 , S2) Å 1
Nsig

∑
Nsig

iÅ1

ÉRe[S1( i)] 0 Re[S2( i)]É, [10]

with Nsig denoting the number of points in the spectra. It is
noted that Eq. [10] used the fact that solid-state NMR pow-FIG. 4. Sorted weighting factors ( left) and solid angles (right) for the
der spectra involving static as well as rotating samples cancrystallites associated with powder averaging using (a) 150 random, (b)

144 planar grid, (c) 144 spherical grid, (d) 143 planar ZCW, (e) 143 be phased into pure absorption (here defined as the real
spherical ZCW, (f ) 145 Alderman, (g) 146 SOPHE, and (h) 144 REPUL- part) ; for rotating samples, this requires averaging over the
SION crystallites. The weighting factors are those recommended for each third Euler angle g (12) . Upon calculation of Q spectra withmethod, apart from the SOPHE method where unit factors are shown. For

different orientation of the tensor(s) relative to the crystal-the REPULSION method, the weighting factors were generated using Eq.
fixed coordinate system, it is useful to introduce the average[8]. All solid angles were calculated using Eq. [9] .

of the differences to the average spectrum,

of Fig. 4 include corresponding plots of the weighting factors
actually used in the powder averaging for the various meth- SU Å

1
Q

∑
Q

iÅ1

Si , [11]
ods. From the plots in Fig. 4, it is clearly evident that among
the methods investigated, REPULSION provides the most

given byuniform set of solid angles promising efficient and reliable
numerical powder averaging using a minimum of different
crystallite orientations.

DU Å 1
Q

∑
Q

iÅ1

D(Si , SU ) . [12]Two criteria may be employed for numerical evaluation
of the actual powder-averaging efficiency. First, the result
of a computer simulation should ideally be invariant toward A measure for the quality of the powder averaging is now
any rotation of the anisotropic tensor(s) prior to the powder provided either directly by DV or by the standard deviation
averaging. Otherwise, the powder averaging may by itself (Dev) of the Q D values relative to DV :
introduce systematic errors being particularly severe when
using powder methods for determination of magnitudes and
relative orientation of tensors from several anisotropic inter- Dev(D) Å

√
1
Q

∑
Q

iÅ1

(DU 0 Di )2 , [13]
actions. Second, the discrepancy between any simulated
spectrum and a totally converged spectrum should be as
small as possible. The first convergence criterion is readily where we note that 95% of all D values should be found

inside {2 Dev(D) around the average value.employed in praxis by calculating a series of spectra sub-
jected to different ( ideally uniformly distributed) reorienta- Figure 5 gives a graphical representation of DV and

Dev(D) values calculated for the various powder averagingtions of the anisotropic tensor(s) relative to the crystal-
fixed coordinate system prior to the powder averaging. The methods using Eqs. [10] – [13] for Q Å 100 MAS NMR

spectra differing in the orientation of the anisotropic tensordistribution of spectra around an average spectrum, calcu-
lated as the normalized sum of all spectra, provides direct relative to the crystal-frame being involved in the powder

averaging. Specifically, each simulation represents an aniso-insight into the performance of the powder averaging. The
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FIG. 5. Average absolute differences (DV ) and standard deviations of absolute differences [Dev(D)] calculated for the various powder-averaging
methods on basis of Q Å 100 13C chemical shielding anisotropy spectra differing in the orientation of the anisotropic tensor relative to the crystal-fixed
frame. The spectra were calculated using parameters corresponding to the MAS NMR spectrum (1500 Hz spinning frequency) of the carbonyl group in
zinc acetate recorded at a Larmor frequency of 80 MHz (v iso /2p Å 0, v aniso /2p Å 06460 Hz, and h Å 0.34). The different tensor orientations were
uniformly distributed over the sphere using the method in Appendix 1 with N Å 100 (we note that random selection of these orientations leads to curves
of very similar appearance). Specifically, the curves corresponds to random ( ), planar grid (– – h – –), spherical grid ( ) , planar ZCW (using
g1 and g2 values corresponding to f Å a 2b 2) ( ) , spherical ZCW (using g1 and g2 values corresponding to f Å a 2 b 2) (– – s – –), planar ZCW
(4) (using g1 and g2 values corresponding to anisotropic chemical shielding of a static sample) (– – n – –), Alderman (– – l – –), SOPHE (with
weighting factors calculated using Eq. [9]) (– – m – –), REPULSION with unit area ( ) , and REPULSION with weighting factors calculated using
Eq. [9] ( ) .

tropic chemical shielding powder pattern corresponding to are the ZCW and REPULSION methods. Among these, RE-
PULSION is superior when using a number of crystallites ina 13C MAS spectrum of the carbonyl group of zinc acetate

recorded at a carbon resonance frequency of 80 MHz and the regime up to about 250. In the regime of 50–250 crystallite
orientations, being extremely relevant for calculation of magic-using a spinning frequency of 1500 Hz. To avoid systematic

errors, the Q Å 100 different tensor orientations were uni- angle-spinning (MAS) NMR spectra, it appears that for any
acceptable standard deviation the REPULSION method pro-formly distributed over the sphere using the REPULSION

method. It should be mentioned, however, that calculations vides a significant reduction in the number of required crys-
tallite orientations as compared to earlier methods. At largerperformed using 100 randomly selected tensor orientations

essentially provided the same result. Clearly, the curves in numbers of crystallites, the difference between REPULSION
and the ZCW methods becomes insignificant, taking into ac-Fig. 5 provide a very direct measure of the powder-averaging

efficiency and the convergence of the various methods as count the logarithmic vertical scale, although it appears that
the ZCW method provides slightly more efficient averagingfunction of the number of crystallites used for the powder

averaging. We note that comparison of the simulated spectra than the REPULSION method. The latter observation may be
ascribed to the fact that it is increasingly difficult to numericallywith a simulation using 100,000 crystallites selected using

the planar 2D grid method verifies that the curves in Fig. 5 obtain fully converged sets of REPULSION crystallite orienta-
tion with increasing number of crystallites.converge to an reliable value upon increasing the number

of crystallite orientations. Several other interesting features appear from Fig. 5. First, it
surprisingly appears that the planar 2D grid and ZCW methodsIt is evident that the random crystallite method provides a

very inefficient powder averaging. The 2D grid, SOPHE, and generally tend to converge faster than their spherical counter-
parts. Second, the planar ZCW partition schemes optimized toAlderman methods converge more rapidly, but generally re-

quire several hundreds of crystallites in order to achieve accept- the f Å a2b2 and the anisotropic chemical shielding (static
sample) functions behave very similar, indicating that this pow-able powder averaging. Clearly, the two most efficient schemes

AID JMR 1087 / 6j16$$$443 03-10-97 14:18:00 magas



139POWDER AVERAGING IN SOLID-STATE NMR

der-averaging scheme may be employed without concerning do
dPsum Å 0the specific function to be averaged. In practice, functional

independence, being intrinsic in the REPULSION method, is of for i Å 1 to N
for j Å i / 1 to Nfundamental practical importance since the powder-averaging

method otherwise may introduce systematic errors in iterative qij Å cos01(OPirOPj)
fitting of experimental spectra where the function may change V Å OPj 1 OPi

by changing the parameters being fitted. dPi Å V 1 OPi

ORi Å ORi / C /q 2
ijrdPi /ÉdPiÉ

CONCLUSION ORi Å ORi /ÉORiÉ

dPj Å OPj 1 VIn conclusion, we have proposed and analyzed a new
ORj Å ORj / C /q 2

ijrdPj/ÉdPjÉmethod (REPULSION) for efficient powder averaging in
magnetic resonance using a minimum of crystallite orienta- ORj Å ORj/ÉORjÉ

tions. Due to highly uniform sets of crystallite orientations, dPsum Å dPsum / dPi / dPj

powder averaging using REPULSION converges faster than end
averaging using previous methods with respect to the number end
of crystallite orientations employed in the averaging. This for i Å 1 to N
may translate directly into reduced computation time re- OPi Å ORi

quired for simulation of powder spectra but also improves end
the reliability of parameters for the anisotropic interactions while dPsum x 0
extracted from these through removal of systematic errors
otherwise resulting from a nonuniform distribution of crys- ACKNOWLEDGMENT
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